Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Ecotoxicol Environ Saf ; 274: 116195, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479315

RESUMO

Fluoride is known to induce nephrotoxicity; however, the underlying mechanisms remain incompletely understood. Therefore, this study aims to explore the roles and mechanisms of lysosomal membrane permeabilization (LMP) and the GSDME/HMGB1 axis in fluoride-induced nephrotoxicity and the protective effects of rutin. Rutin, a naturally occurring flavonoid compound known for its antioxidative and anti-inflammatory properties, is primarily mediated by inhibiting oxidative stress and reducing proinflammatory markers. To that end, we established in vivo and in vitro models. In the in vivo study, rats were exposed to sodium fluoride (NaF) throughout pregnancy and up until 2 months after birth. In parallel, we employed in vitro models using HK-2 cells treated with NaF, n-acetyl-L-cysteine (NAC), or rutin. We assessed lysosomal permeability through immunofluorescence and analyzed relevant protein expression via western blotting. Our findings showed that NaF exposure increased ROS levels, resulting in enhanced LMP and increased cathepsin B (CTSB) and D (CTSD) expression. Furthermore, the exposure to NaF resulted in the upregulation of cleaved PARP1, cleaved caspase-3, GSDME-N, and HMGB1 expressions, indicating cell death and inflammation-induced renal damage. Rutin mitigates fluoride-induced nephrotoxicity by suppressing ROS-mediated LMP and the GSDME/HMGB1 axis, ultimately preventing fluoride-induced renal toxicity occurrence and development. In conclusion, our findings suggest that NaF induces renal damage through ROS-mediated activation of LMP and the GSDME/HMGB1 axis, leading to pyroptosis and inflammation. Rutin, a natural antioxidative and anti-inflammatory dietary supplement, offers a novel approach to prevent and treat fluoride-induced nephrotoxicity.


Assuntos
Fluoretos , Proteína HMGB1 , Nefropatias , Rutina , Animais , Ratos , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Caspase 3/metabolismo , Fluoretos/metabolismo , Fluoretos/toxicidade , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Lisossomos/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade , Rutina/farmacologia , Fluoreto de Sódio/toxicidade , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Gasderminas/efeitos dos fármacos , Gasderminas/metabolismo
2.
Adv Med Sci ; 68(2): 322-331, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37716182

RESUMO

PURPOSE: The possible effects of ramelteon, a melatonin receptor agonist on bleomycin-induced lung fibrosis were analyzed via transforming growth factor ß1 (TGF-ß1), the high mobility group box 1 (HMGB1) and Nod-like receptor pyrin domain-containing 3 (NLRP3) which are related to the fibrosis process. MATERIALS AND METHODS: Bleomycin (0.1 â€‹mL of 5 â€‹mg/kg) was administered by intratracheal instillation to induce pulmonary fibrosis (PF). Starting 24 â€‹h after bleomycin administration, a single dose of ramelteon was administered by oral gavage to the healthy groups, i.e. PF â€‹+ â€‹RM2 (pulmonary fibrosis model with bleomycin â€‹+ â€‹ramelteon at 2 â€‹mg/kg) and PF â€‹+ â€‹RM4 (pulmonary fibrosis model with bleomycin â€‹+ â€‹ramelteon at 4 â€‹mg/kg) at 2 and 4 â€‹mg/kg doses, respectively. Real-time polymerase chain reaction (real-time PCR) analyses, histopathological, and immunohistochemical staining were performed on lung tissues. Lung tomography images of the rats were also examined. RESULTS: The levels of TGF-ß1, HMGB1, NLRP3, and interleukin 1 beta (IL-1ß) mRNA expressions increased as a result of PF and subsequently decreased with both ramelteon doses (p â€‹< â€‹0.0001). Both doses of ramelteon partially ameliorated the reduction in the peribronchovascular thickening, ground-glass appearances, and reticulations, and the loss of lung volume. CONCLUSIONS: The severity of fibrosis decreased with ramelteon application. These effects of ramelteon may be associated with NLRP3 inflammation cascade.


Assuntos
Proteína HMGB1 , Melatonina , Fibrose Pulmonar , Animais , Ratos , Bleomicina/toxicidade , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Pulmão , Melatonina/antagonistas & inibidores , Melatonina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
3.
Toxicol Lett ; 373: 22-32, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375637

RESUMO

Dasatinib, a second-generation BCR-ABL inhibitor, is currently used as first-line treatment for patients with chronic myeloid leukemia. However, dasatinib treatment increases the risk of severe cutaneous toxicity, which limits its long-term safe use in clinic. The underlying mechanism for dasatinib-induced cutaneous toxicity has not been clarified. In this study, we tested the toxicity of dasatinib on human immortal keratinocyte line (HaCaT) and normal human epidermal keratinocytes (NHEK). We found that dasatinib directly caused cytotoxicity on keratinocytes, which could be the explanation of the clinical characteristic of pathology. Mechanistically, dasatinib impaired mitophagy by downregulating HMGB1 protein level in keratinocytes, which led to the accumulation of dysfunctional mitochondria. Mitochondria-derived ROS caused DNA damage and cell apoptosis. More importantly, we confirmed that overexpression of HMGB1 could reverse dasatinib-induced keratinocyte apoptosis, and preliminarily explored the intervention effect of saikosaponin A, which could increase HMGB1 expression, on cutaneous toxicity caused by dasatinib. Collectively, our study revealed that dasatinib induced keratinocyte apoptosis via inhibiting HMGB1-mediated mitophagy and saikosaponin A could be a viable strategy for prevention of dasatinib-induced cutaneous toxicity.


Assuntos
Apoptose , Dasatinibe , Humanos , Apoptose/efeitos dos fármacos , Dasatinibe/toxicidade , Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Mitofagia/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia
4.
Hum Exp Toxicol ; 41: 9603271221127429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36112883

RESUMO

BACKGROUND: As an aggressive human malignancy, esophageal squamous cell carcinoma (ESCC) is prevalent globally, especially in China. Verbascoside (VE) exerts anti-cancer effects in several human cancers. This work was to investigate the effects of VE on ESCC cells. METHODS: Esophageal squamous cell carcinoma cell proliferation, apoptosis, migration, and invasion were assessed by CCK-8, TUNEL, and Transwell assays. Gene and protein levels were detected by RT-qPCR and western blotting. CDC42 activity was evaluated by G-lisa assay. RESULTS: Verbascoside significantly inhibited cell proliferation, migration, and invasion and induced cell apoptosis in ESCC cells. Furthermore, it was found that VE markedly inhibited HMGB1 and RAGE expression in a dose-dependent manner. Besides, HMGB1/RAGE upregulation partially reversed the anti-cancer effects of VE on ESCC cells. VE repressed HMGB1/RAGE-induced CDC42 activation in ESCC cells. In addition, ML141-mediated CDC42 inactivation further enhanced the effect of VE on ESCC cell proliferation, apoptosis, migration, and invasion. CONCLUSIONS: Our findings indicated that VE has significant anti-tumor potential in ESCC by suppressing HMGB1/RAGE-dependent CDC42 activation.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Glucosídeos , Polifenóis , Proteína cdc42 de Ligação ao GTP , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Humanos , Invasividade Neoplásica , Fenótipo , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Receptor para Produtos Finais de Glicação Avançada/efeitos dos fármacos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Sincalida/química , Proteína cdc42 de Ligação ao GTP/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/metabolismo
5.
Sci Rep ; 12(1): 15586, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114339

RESUMO

Bioprospecting contributes to the discovery of new molecules with anticancer properties. Compounds with cytolytic activity and the ability to induce immunogenic cell death can be administered as intratumoral injections with the aim to activate anti-tumor immune responses by causing the release of tumor antigens as well as damage-associated molecular patterns (DAMPs) from dying cancer cells. In the present study, we report the cytolytic and DAMP-releasing effects of a new natural product mimic termed MPM-1 that was inspired by the marine Eusynstyelamides. We found that MPM-1 rapidly killed cancer cells in vitro by inducing a necrosis-like death, which was accompanied by lysosomal swelling and perturbation of autophagy in HSC-3 (human oral squamous cell carcinoma) cells. MPM-1 also induced release of the DAMPs adenosine triphosphate (ATP) and high mobility group box 1 (HMGB1) from Ramos (B-cell lymphoma) and HSC-3 cells, as well as cell surface expression of calreticulin in HSC-3 cells. This indicates that MPM-1 has the ability to induce immunogenic cell death, further suggesting that it may have potential as a novel anticancer compound.


Assuntos
Alarminas , Produtos Biológicos , Carcinoma de Células Escamosas , Neoplasias Bucais , Trifosfato de Adenosina/metabolismo , Alarminas/efeitos dos fármacos , Alarminas/metabolismo , Antígenos de Neoplasias , Produtos Biológicos/farmacologia , Calreticulina/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , Humanos , Neoplasias Bucais/tratamento farmacológico
6.
Biomed Pharmacother ; 146: 112496, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34959117

RESUMO

Intestinal injury is one of the major side effects that are induced by medical radiation exposure, and has limited effective therapies. In this study, we investigated the beneficial effects of sanguinarine (SAN) on intestinal injury induced by ionizing radiation (IR) both in vitro and in vivo. Mice were exposed to whole abdominal irradiation (WAI) to mimic clinical scenarios. SAN was injected intraperitoneally to mitigate IR-induced injury. Histological examination was performed to assess the tissue injuries of the spleen and small intestine. A small intestinal epithelial cell line-6 (IEC-6) was analyzed for its viability and apoptosis in vitro under different treatments. Inflammation-related pathways and serum inflammatory cytokines were detected via Western blot analysis and ELISA, respectively. High-throughput sequencing was used to characterize the gut microbiota profile. High-performance liquid chromatography was performed to assess short-chain fatty acid contents in the colon. In vitro, SAN pretreatment protected cell viability and reduced apoptosis in IEC-6 cells. In vivo, SAN pretreatment protected immune organs, alleviated intestinal injury, and promoted intestinal recovery. SAN also reduced the levels of inflammatory cytokines, suppressed high mobility group box 1 (HMGB1)/ Toll-like receptor 4 (TLR4) pathway activation, and modulated gut microbiota composition. Our findings demonstrate that the beneficial properties of SAN alleviated intestinal radiation injury. Thus, SAN represents a therapeutic option for protecting against IR-induced intestinal injury in preclinical settings.


Assuntos
Benzofenantridinas/farmacologia , Intestino Delgado/efeitos dos fármacos , Isoquinolinas/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Baço/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/efeitos dos fármacos , Proteína HMGB1/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Injeções Intraperitoneais , Intestino Delgado/patologia , Intestino Delgado/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/patologia , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos , Baço/patologia , Baço/efeitos da radiação , Receptor 4 Toll-Like/efeitos dos fármacos
7.
Int J Neurosci ; 132(1): 77-88, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33045891

RESUMO

OBJECTIVE: Microglial activation is an essential pathological mechanism of spinal cord ischemia-reperfusion injury (SCIRI). Previous studies showed dexmedetomidine (DEX) could alleviate SCIRI while the mechanism was not clear. This study aims to investigate the role of DEX in microglial activation and clarify the underlying mechanism. METHODS: The motion function of mice was quantified using the Basso Mouse Scale for Locomotion. The expression of long non-coding RNA (lncRNA) small nucleolar RNA host gene 14 (SNHG14) was determined by qRT-PCR. The expression of high-mobility group box 1 (HMGB1) was measured by western blot. The activation of microglia was evaluated by the expression of ED-1 and the levels of TNF-α and IL-6. The interplay between SNHG14 and HMGB1 was confirmed with RNA pull-down and RIP assay. The stability of HMGB1 was measured by ubiquitination assay and cycloheximide-chase assay. RESULTS: DEX inhibited microglial activation and down-regulated SNHG14 expression in SCIRI mice and oxygen and glucose deprivation/reoxygenation (OGD/R)-treated primary microglia. Functionally, SNHG14 overexpression reversed the inhibitory effect of DEX on OGD/R-induced microglial activation. Further investigation confirmed that SNHG14 bound to HMGB1, positively regulated HMGB1 expression by enhancing its stability. In addition, the silence of HMGB1 eliminated the pro-activation impact of SNHG14 overexpression on DEX-treated microglia under the OGD/R condition. Finally, in vivo experiments showed SNHG14 overexpression abrogated the therapeutic effect of DEX on SCIRI mice by up-regulating HMGB1. CONCLUSION: DEX accelerated HMGB1 degradation via down-regulating SNHG14, thus inhibiting microglial activation in SCIRI mice.


Assuntos
Dexmedetomidina/farmacologia , Proteína HMGB1/efeitos dos fármacos , Microglia/efeitos dos fármacos , RNA Longo não Codificante/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Doenças Vasculares da Medula Espinal/tratamento farmacológico , Animais , Comportamento Animal , Modelos Animais de Doenças , Locomoção/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos
8.
Front Immunol ; 12: 640315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079539

RESUMO

Innate immune activity plays an essential role in the development of Kawasaki disease (KD) vasculitis. Extracellular release of high mobility group box-1 (HMGB-1), an endogenous damage-associated molecular pattern protein that can activate the innate immune system and drive host inflammatory responses, may contribute to the development of coronary artery abnormalities in KD. Prednisolone (PSL) added to intravenous immunoglobulin treatment for acute KD may reduce such abnormalities. Here, we evaluate the dynamics of HMGB-1 and therapeutic effects of PSL on HMGB-1-mediated inflammatory pathways on KD vasculitis in vitro. Serum samples were collected prior to initial treatment from patients with KD, systemic juvenile idiopathic arthritis (sJIA), and from healthy controls (VH), then incubated with human coronary artery endothelial cells (HCAECs). Following treatment of KD serum-activated HCAECs with PSL or PBS as a control, effects on the HMGB-1 signaling pathway were evaluated. Compared to that from VH and sJIA, KD serum activation induced HCAEC cytotoxicity and triggered extracellular release of HMGB-1. KD serum-activated HCAECs up-regulated extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and, p38 phosphorylation in the cytoplasm and nuclear factor kappa B (NF-κB) phosphorylation in the nucleus and increased interleukin (IL)-1ß and tumor necrosis factor (TNF)-α production. PSL treatment of KD serum-activated HCAECs inhibited extracellular release of HMGB-1, down-regulated ERK1/2, JNK, p38, and NF-κB signaling pathways, and decreased IL-1ß and TNF-α production. Our findings suggest that extracellular HMGB-1 plays an important role in mediating KD pathogenesis and that PSL treatment during the acute phase of KD may ameliorate HMGB-1-mediated inflammatory responses in KD vasculitis.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína HMGB1/metabolismo , Síndrome de Linfonodos Mucocutâneos/metabolismo , Prednisolona/farmacologia , Células Cultivadas , Vasos Coronários , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteína HMGB1/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Vasculite/etiologia , Vasculite/metabolismo
9.
Drug Deliv ; 28(1): 800-813, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33866918

RESUMO

Cancer immunotherapy is a strategy that is moving to the frontier of cancer treatment in the current decade. In this study, we show evidence that 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs), act as immunogenic cell death (ICD) inducers, stimulating an antitumor response which results in synergistic antitumor activity by combining anti-PD-L1 antibody (aPD-L1) in vivo. To investigate the antitumor immunity induced by NPPA-PTX NPs, the expression of both ICD marker calreticulin (CRT) and high mobility group box 1 (HMGB1) were analyzed. In addition, the antitumor activity of NPPA-PTX NPs combined with aPD-L1 in vivo was also investigated. The immune response was also measured through quantitation of the infiltration of T cells and the secretion of pro-inflammatory cytokines. The results demonstrate that NPPA-PTX NPs induce ICD of MDA-MB-231 and 4T1 cells through upregulation of CRT and HMGB1, reactivating the antitumor immunity via recruitment of infiltrating CD3+, CD4+, CD8+ T cells, secreting IFN-γ, TNF-α, and the enhanced antitumor activity by combining with aPD-L1. These data suggest that the combined therapy has a synergistic antitumor activity and has the potential to be developed into a novel therapeutic regimen for cancer patients.


Assuntos
Albuminas/farmacologia , Antineoplásicos/farmacologia , Morte Celular Imunogênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Nanopartículas/química , Paclitaxel/farmacologia , Albuminas/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antígeno B7-H1/imunologia , Calreticulina/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Proteína HMGB1/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/administração & dosagem , Propionatos/química , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Death Dis ; 12(4): 402, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854044

RESUMO

Caspase-11, a cytosolic lipopolysaccharide (LPS) receptor, mediates lethal immune responses and coagulopathy in sepsis, a leading cause of death worldwide with limited therapeutic options. We previously showed that over-activation of caspase-11 is driven by hepatocyte-released high mobility group box 1 (HMGB1), which delivers extracellular LPS into the cytosol of host cells during sepsis. Using a phenotypic screening strategy with recombinant HMGB1 and peritoneal macrophages, we discovered that FeTPPS, a small molecule selectively inhibits HMGB1-mediated caspase-11 activation. The physical interaction between FeTPPS and HMGB1 disrupts the HMGB1-LPS binding and decreases the capacity of HMGB1 to induce lysosomal rupture, leading to the diminished cytosolic delivery of LPS. Treatment of FeTPPS significantly attenuates HMGB1- and caspase-11-mediated immune responses, organ damage, and lethality in endotoxemia and bacterial sepsis. These findings shed light on the development of HMGB1-targeting therapeutics for lethal immune disorders and might open a new avenue to treat sepsis.


Assuntos
Caspases Iniciadoras/metabolismo , Proteína HMGB1/metabolismo , Lipopolissacarídeos , Sepse/metabolismo , Animais , Células Cultivadas , Proteína HMGB1/efeitos dos fármacos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Knockout , Sepse/tratamento farmacológico , Sepse/imunologia , Transdução de Sinais/efeitos dos fármacos
11.
Food Chem Toxicol ; 151: 112134, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33762183

RESUMO

T-2 toxin, a food-derived mycotoxin, has been identified as a neurotoxin. Nonetheless, T-2 toxin-induced neuroinflammation has never been revealed. As an important therapeutic target for inflammatory diseases and cancers, the role of high mobility group B1 (HMGB1) in mycotoxin-mediated neurotoxicity remains a mystery. In current study, we found that PC12 cells were sensitive to trace amounts of T-2 toxin less than 12 ng/mL, distinguished by decreased cell viability and increased release of lactate dehydrogenase (LDH). Oxidative stress and mitochondrial damage were observed in PC12 cells, manifested as accumulation of oxidative stress products, up-regulation of Nrf2/HO-1 pathway and decrease of mitochondrial membrane potential (MMP), leading to mitochondria-dependent apoptosis. Meanwhile, we first discovered that tiny amounts of T-2 toxin triggered neuroinflammation directly, including raising the expression and translocation of NF-κB and promoting secretion of proinflammatory cytokines such as TNF-α, IL-6, IL-8 and IL-1ß. Most interestingly, the increased of HMGB1 was detected both inside and outside the cells. Conversely, HMGB1 siRNA reduced T-2 toxin-mediated oxidative stress, apoptosis and neuroinflammatory outbreak, accompanied by lessened caspase-3 and caspase-9, and decreased secretion of pro-inflammatory cytokines. Taken together, T-2 toxin-stimulated PC12 cells simultaneously displayed apoptosis and inflammation, whereas HMGB1 played a critical role in these neurotoxic processes.


Assuntos
Proteína HMGB1/efeitos dos fármacos , Sistema Nervoso/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Toxina T-2/toxicidade , Animais , Relação Dose-Resposta a Droga , NF-kappa B/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
12.
Int Heart J ; 62(1): 162-170, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33455985

RESUMO

High-mobility group box 1 (HMGB1) is increased in the myocardium under pressure overload (PO) and is involved in PO-induced cardiac remodeling. The mechanisms of the upregulation of cardiac HMGB1 expression have not been fully elucidated. In the present study, a mouse transverse aortic constriction (TAC) model was used, and an angiotensin II (Ang II) type 1 (AT1) receptor inhibitor (losartan) or Ang II type 2 (AT2) receptor inhibitor (PD123319) was administrated to mice for 14 days. Cardiac myocytes were cultured and treated with Ang II for 5 minutes to 48 hours conditionally with the blockage of the AT1 or AT2 receptor. TAC-induced cardiac hypertrophy was observed at 14 days after the operation, which was partially reversed by losartan, but not by PD123319. Similarly, the upregulated HMGB1 expression levels observed in both the serum and myocardium induced by TAC were reduced by losartan. Elevated cardiac HMGB1 protein levels, but not mRNA or serum levels, were significantly decreased by PD123319. Furthermore, HMGB1 expression levels in culture media and cardiac myocytes were increased following Ang II treatment in vitro, positively associated with the duration of treatment. Similarly, Ang II-induced upregulation of HMGB1 in vitro was inhibited by both losartan and PD123319. These results suggest that upregulation of HMGB1 in serum and myocardium under PO, which are partially derived from cardiac myocytes, may be induced by Ang II via the AT1 and AT2 receptors. Additionally, amelioration of PO-induced cardiac hypertrophy following losartan treatment may be associated with the reduction of HMGB1 expression through the AT1 receptor.


Assuntos
Angiotensina II/farmacologia , Proteína HMGB1/efeitos dos fármacos , Losartan/farmacologia , Miocárdio/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Aorta/patologia , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Estudos de Casos e Controles , Constrição , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Losartan/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Piridinas/administração & dosagem , Piridinas/farmacologia , Regulação para Cima , Vasoconstritores/farmacologia
13.
J Neuroimmunol ; 352: 577480, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493985

RESUMO

The inflammatory mediator high-mobility group box 1 (HMGB1)-induced signaling pathway has been shown to play an important role in the pathogenesis of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Matrine (MAT), a quinolizidine alkaloid component derived from the root of Sophorae flavescens, has the capacity to effectively suppress EAE. However, the impact of MAT treatment on HMGB1-induced signaling is not known. In the present study, we show that MAT treatment alleviated disease severity of ongoing EAE, reduced inflammatory infiltration and demyelination, and reduced the production of inflammatory factors including TNF-α, IL-6, and IL-1ß in the CNS. Moreover, MAT administration significantly reduced the protein and RNA expression of HMGB1 and TLR4 in the spinal cord, particularly in astrocytes and microglia/infiltrating macrophages. The expression of MyD88 and TRAF6, and the phosphorylation of NF-κB p65, was also down-regulated after MAT treatment. In contrast, the level of IκB-α, an inhibitory molecule for NF-κB activation, was significantly increased. Furthermore, the direct inhibitory effect of MAT on HMGB1/TLR4/NF-κB signaling in macrophages was further confirmed in vitro. Taken together, these findings demonstrate that MAT treatment alleviated CNS inflammatory demyelination and activation of astrocytes and microglia/macrophages in EAE rats, and that the mechanism underlying these effects may be closely related to modulation of HMGB1/TLR4/NF-κB signaling pathway.


Assuntos
Alcaloides/farmacologia , Encefalomielite Autoimune Experimental/metabolismo , Quinolizinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos , Ratos Wistar , Medula Espinal/patologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Matrinas
14.
Pharmacol Rep ; 73(1): 31-42, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33015736

RESUMO

Depression is a common psychiatric disorder, the exact pathogenesis of which is still elusive. Studies have proposed that immunity disproportion and enhancement in proinflammatory cytokines might be linked with the development of depression. HMGB1 (High-mobility group box (1) protein has obtained more interest as an essential factor in inherent immune reactions and a regulating factor in various inflammation-related diseases. HMGB1 is a ubiquitous chromatin protein and is constitutively expressed in nucleated mammalian cells. HMGB1 is released by glial cells and neurons upon inflammasome activation and act as a pro-inflammatory cytokine. HMGB1 is a late mediator of inflammation and has been indicated as a major mediator in various neuroinflammatory diseases. Microglia, which is the brain immune cell, is stimulated by HMGB1 and released inflammatory mediators and induces chronic neurodegeneration in the CNS (central nervous system). In the current review, we aimed to investigate the role of HMGB1 in the pathogenesis of depression. The studies found that HMGB1 functions as proinflammatory cytokines primarily via binding receptors like RAGE (receptor for advanced glycation end product), TLR2 and TLR4 (Toll-like receptor 2 and 4). Further, HMGB1 added to the preparing impacts of stress-pretreatment and assumed a major function in neurodegenerative conditions through moderating neuroinflammation. Studies demonstrated that neuroinflammation played a major role in the development of depression. The patients of depression generally exhibited an elevated amount of proinflammatory cytokines in the serum, microglia activation and neuronal deficit in the CNS.


Assuntos
Depressão/tratamento farmacológico , Depressão/genética , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/genética , Animais , Humanos , Inflamassomos , Receptores de Citocinas/efeitos dos fármacos , Receptores de Citocinas/genética
15.
Comb Chem High Throughput Screen ; 24(4): 587-590, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32723229

RESUMO

Since the high mobility group box-1 (HMGB1) molecule had been recognized as a proinflammatory cytokine, which mediates endotoxin lethality of mice, there have been lots of papers about targeting the HMGB1 within the contexts of infection, inflammation, and cancer. The pathogenic impact of HMGB1 to the severe acute respiratory syndrome (SARS) and disease management with herbal formulations targeting this unique protein have already been proposed. However, the failure of the numerous current anti-viral therapies on the ongoing viral infections casts reappraisal of the possible interrelationships regarding the HMGB1 and SARS-CoV-2. COVID-19 pandemic due to the SARS-CoV-2 virus is a currently ongoing challenging global health crisis. There is still not any proven exact treatment of COVID-19 with high level of evidence. In this paper, we focused on the potential usage of external and/or inhalation preparation of antiviral/antibacterial herbal products capable of targeting HMGB1 for the clinical management candidates of the ongoing COVID-19 infection.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteína HMGB1/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , COVID-19/virologia , Humanos
16.
Cardiovasc Drugs Ther ; 35(6): 1111-1127, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32623597

RESUMO

PURPOSE: Chronic rejection induces the occurrence of orthotopic allograft transplantation (OAT) vasculopathy, which results in failure of the donor organ. Numerous studies have demonstrated that in addition to regulating blood sugar homeostasis, dipeptidyl peptidase-4 (DPP-4) inhibitors can also provide efficacious therapeutic and protective effects against cardiovascular diseases. However, their effects on OAT-induced vasculopathy remain unknown. Thus, the aim of this study was to investigate the direct effects of sitagliptin on OAT vasculopathy in vivo and in vitro. METHODS: The PVG/Seac rat thoracic aorta graft to ACI/NKyo rat abdominal aorta model was used to explore the effects of sitagliptin on vasculopathy. Human endothelial progenitor cells (EPCs) were used to investigate the possible underlying mechanisms. RESULTS: We demonstrated that sitagliptin decreases vasculopathy in OAT ACI/NKyo rats. Treatment with sitagliptin decreased BNP and HMGB1 levels, increased GLP-1 activity and stromal cell-derived factor 1α (SDF-1α) expression, elevated the number of circulating EPCs, and improved the differentiation possibility of mononuclear cells to EPCs ex vivo. However, in vitro studies showed that recombinant B-type natriuretic peptide (BNP) and high mobility group box 1 (HMGB1) impaired EPC function, whereas these phenomena were reversed by glucagon-like peptide 1 (GLP-1) receptor agonist treatment. CONCLUSIONS: We suggest that the mechanisms underlying sitagliptin-mediated inhibition of OAT vasculopathy probably occur through a direct increase in GLP-1 activity. In addition to the GLP-1-dependent pathway, sitagliptin may regulate SDF-1α levels and EPC function to reduce OAT-induced vascular injury. This study may provide new prevention and treatment strategies for DPP-4 inhibitors in chronic rejection-induced vasculopathy.


Assuntos
Aorta Torácica/transplante , Inibidores da Dipeptidil Peptidase IV/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Fosfato de Sitagliptina/farmacologia , Doenças Vasculares/fisiopatologia , Animais , Quimiocina CXCL12/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Proteína HMGB1/efeitos dos fármacos , Masculino , Peptídeo Natriurético Encefálico/efeitos dos fármacos , Ratos , Ratos Endogâmicos ACI , Transplante Homólogo
17.
Pregnancy Hypertens ; 23: 34-40, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33189014

RESUMO

OBJECTIVE: The expression of high-mobility group box 1 (HMGB1) in trophoblasts is elevated, which contributes to the development of preeclampsia. Thus, this study aimed to investigate the effect of glycyrrhizin, a natural HMGB1 inhibitor, on the development of preeclampsia. METHODS: Preeclampsia was induced in pregnant Lewis rats through oral administration of L-NAME (50 mg/kg/day) on gestational day (GD) 13-19. Glycyrrhizin (10, 30, or 60 mg/kg/day) was given by oral gavage on GD 10-19. Systolic blood pressure (SBP), diastolic blood pressure (DBP), 24-hour proteinuria, live pup birth ratio, pup weight, pup body length, and placental weight were measured. Also, the expression levels of inflammatory factors (TNF-α, iNOS, IL-1, and IL-6), HMGB1, and TLR4 in the placenta or in the serum were analyzed by enzyme-linked immunosorbent assay, RT-PCR, and Western blot analysis. RESULTS: Glycyrrhizin significantly reduced the SBP, DBP, and 24-hour proteinuria on GD 16 and 20 in a dose-dependent manner and ameliorated the pregnancy outcomes in preeclampsia rats. The elevated inflammatory molecule levels were markedly decreased by glycyrrhizin not only in the serum but also in the placenta. Moreover, the upregulated HMGB1 and TLR4 expression levels were diminished by glycyrrhizin administration. CONCLUSION: This study shows that glycyrrhizin could alleviate preeclampsia and the preeclampsia-associated inflammatory reaction, and this effect could be attributed to HMGB1 inhibition.


Assuntos
Ácido Glicirrízico/farmacologia , Pré-Eclâmpsia/prevenção & controle , Animais , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Ácido Glicirrízico/metabolismo , Proteína HMGB1/efeitos dos fármacos , Humanos , Pré-Eclâmpsia/metabolismo , Gravidez , Proteinúria/prevenção & controle , Ratos , Ratos Endogâmicos Lew , Receptor 4 Toll-Like/efeitos dos fármacos
18.
Foot Ankle Int ; 41(12): 1455-1465, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33180557

RESUMO

BACKGROUND: Tendinopathy is a debilitating tendon disorder that affects millions of Americans and costs billions of health care dollars every year. High mobility group box 1 (HMGB1), a known tissue damage signaling molecule, has been identified as a mediator in the development of tendinopathy due to mechanical overloading of tendons in mice. Metformin (Met), a drug approved by the Food and Drug Administration used for the treatment of type 2 diabetes, specifically inhibits HMGB1. This study tested the hypothesis that Met would prevent mechanical overloading-induced tendinopathy in a mouse model of tendinopathy created by intensive treadmill running (ITR). METHODS: C57BL/6J mice (female, 3 months old) were equally separated into 4 groups and treated for 24 weeks as follows: group 1 had cage control activities, group 2 received a single intraperitoneal injection of Met (50 mg/kg body weight) daily, group 3 underwent ITR to induce tendinopathy, and group 4 received daily Met injection along with ITR to inhibit HMGB1. Tendinopathic changes were assessed in Achilles tendons of all mice using histology, immunohistochemistry, and enzyme-linked immunosorbent assays. RESULTS: ITR induced HMGB1 release into the tendon matrix and developed characteristics of tendinopathy as evidenced by the expression of macrophage marker CD68, proinflammatory molecules (COX-2, PGE2), cell morphological changes from normal elongated cells to round cells, high levels of expression of chondrogenic markers (SOX-9, collagen type II), and accumulation of proteoglycans in tendinopathic tendons. Daily injection of Met inhibited HMGB1 release and decreased these degenerative changes in ITR tendons. CONCLUSIONS: Inhibition of HMGB1 by injections of Met prevented tendinopathy development due to mechanical overloading in the Achilles tendon in mice. CLINICAL RELEVANCE: Met may be able to be repurposed as a therapeutic option for preventing the development of tendinopathy in high-risk patients.


Assuntos
Tendão do Calcâneo/efeitos dos fármacos , Proteína HMGB1/efeitos dos fármacos , Metformina/farmacologia , Tendinopatia/prevenção & controle , Animais , Modelos Animais de Doenças , Feminino , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL
19.
Pediatr Rheumatol Online J ; 18(1): 76, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023630

RESUMO

BACKGROUND: Kawasaki disease (KD) is the most common pediatric systemic vasculitides of unknown etiology. Recent clinical studies led to reappraisal of the usefulness of initial combination therapy of intravenous immunoglobulin (IVIG) plus a corticosteroid for patients with severe KD. However, the molecular mechanisms underlying the clinical benefits of that combination therapy remain unclear. Here, we used cultured human coronary artery endothelial cells (HCAECs), as a mimic of KD, to study the possible mechanisms responsible for the clinical benefits of adding a corticosteroid to standard IVIG therapy for patients with severe KD. METHODS: HCAECs were stimulated with TNF-α, IL-1α or IL-1ß in the presence and absence of high-dose IgG and/or dexamethasone (DEX). The mRNA and protein concentrations for high-mobility group box-1 (HMGB1), IL-1α, IL-6 and granulocyte-colony stimulating factor (G-CSF) in the culture supernatants were measured by quantitative PCR (qPCR) and ELISA, respectively. Apoptosis was evaluated by the caspase 3/7 activities. RESULTS: DEX, but not IgG, significantly inhibited apoptosis caused by inflammatory stimuli, resulting in effective reduction of HMGB1 and IL-1α protein release by HCAECs. As previously reported, DEX or IgG alone significantly suppressed TNF-α-induced production of IL-6 and G-CSF and mRNA expression, but induction of those cytokines by IL-1 s (IL-1α and IL-1ß) was resistant to high-dose IgG. CONCLUSIONS: A corticosteroid can effectively inhibit the release of HMGB1 and IL-1α, which may be involved in IVIG resistance in KD. Since high-dose IgG does not have such beneficial anti-cytotoxic effects, adding a corticosteroid to standard IVIG therapy may help prevent the progression of IVIG resistance in KD.


Assuntos
Vasos Coronários/citologia , Dexametasona/farmacologia , Células Endoteliais/efeitos dos fármacos , Glucocorticoides/farmacologia , Imunoglobulina G/farmacologia , Fatores Imunológicos/farmacologia , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Apoptose/efeitos dos fármacos , Células Cultivadas , Dexametasona/uso terapêutico , Quimioterapia Combinada , Células Endoteliais/metabolismo , Glucocorticoides/uso terapêutico , Fator Estimulador de Colônias de Granulócitos/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/metabolismo , Proteína HMGB1/efeitos dos fármacos , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Técnicas In Vitro , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1alfa/farmacologia , Interleucina-1beta/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Modelos Cardiovasculares , Síndrome de Linfonodos Mucocutâneos/genética , Síndrome de Linfonodos Mucocutâneos/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
20.
Food Funct ; 11(9): 7925-7934, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32820776

RESUMO

Acetaminophen (APAP) is one of the safest and most effective over-the-counter (OTC) analgesics and antipyretics, but excessive doses of APAP will induce hepatotoxicity with high morbidity and mortality worldwide. Kaempferol (KA), a flavonoid compound derived from the medicinal and edible plant of Penthorum chinense Pursh, has been reported to exert a profound anti-inflammatory and antioxidant activity. In this study, we explored the protective effect and novel mechanism of KA against APAP-induced hepatotoxicity. The results revealed that KA pretreatment significantly reduced the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), relieved hepatocellular damage and apoptosis, attenuated the exhaustion of glutathione (GSH) and accumulation of malondialdehyde (MDA), increased the expression of antioxidative enzymes (e.g., heme oxygenase 1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1)), and thus restrained APAP-induced oxidative damage in the liver. KA suppressed the expression of NLRP3 and reduced the levels of pro-inflammatory factors, including interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Moreover, KA remarkably inhibited high-mobility group box 1 (HMGB1) and toll-like receptor 4 (TLR4) expression as well as nuclear factor kappa-B (NF-κB) activation for liver protection against APAP-induced inflammatory responses and apoptosis. Taken together, our findings suggested that KA could effectively protect hepatocytes from APAP hepatotoxicity through the up-regulation of HO-1 and NQO1 expression, the down-regulation of NLRP3 expression, and the inhibition of the HMGB1/TLR4/NF-κB signaling pathway.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Proteína HMGB1/efeitos dos fármacos , Inflamassomos/metabolismo , Quempferóis/farmacologia , NF-kappa B/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Alanina Transaminase/metabolismo , Animais , Antioxidantes , Apoptose/efeitos dos fármacos , Glutationa , Proteína HMGB1/metabolismo , Hepatócitos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...